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Characteristic Trajectories
of
Generalized Lanchester Equations

by

John M. Wozencraft
Paul H. Moose

ABSTRACT

Generalized Lanchester-type differential equations are used to model attrition pro-
cesses. This system of non-linear equations has multiple equilibrium solutions, which
can be determined by a numerical technique called the Continuation Method when the
problem’s dimensionality is moderate.

System dynamics are investigated and shown to depend critically on a domain of
attraction defined by a tube which connects the non-negative equilibrium points and
contains the dominant eigenvector at those points. Principles are presented and illus-
trated for mapping NM-dimensional systems into equivalent two-dimensional systems.
This capability is especially important when aggregating subsystems in multi-level sys-
tems modeling. It is shown that the two-dimensional Lanchester systems have only
four distinct modes of behavior, depending on the number of real positive equilibrium
points that they have. A method is described and illustrated for reallocating attrition

as state variables approach zero in order to guarantee their non-negativity.
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I. Introduction
Lanchester’s equations were introduced during WW [ to mathematically model

aerial combat losses [1]. During and after WW II, they were studied extensively for their
potential to model attrition over a wide variety of military combat situations [2],(3]. In
their elementary form, Lanchester’s equations are coupled evolution equations:

i(t) = —-F(z,y,?)

y(t) = -G(I’ Y, t)

where the functions, F(.) and G(.) are generally non-linear in the state variables z and

(1)

TV VRV N Y Yy T S Y W RS S SFEReTE W

y. The state variables represent the size, or strength, of the opposing forces or weapons
systems.

In this paper we report the results of our research into a generalized system of
Lanchester equations

#(t) = Fizi, gt i=12,...N

: , (2)
y;(t)=Gj(z, ¥ t); Ji=12,..M

in which N components of a non-homogeneous “X-force” engage M components of a
“Y-force.” Motivation for this research stemmed from our interest in the decision &
control problems faced by a modern day military commander. We needed an analytical
model of the attrition process that would accomodate the great variety present in the
military environment, but also one whose major dynamical features could be easily
interpreted and understood. This lead us to study in detail the dynamic properties of
the special N x M system

M M
Li(t) = —u;zi(t) - Za;,-x.-(t)y,-(t) - Zbijyj(t) +rii=1,2,...N
=1 =1
N N (3)
Gi(t) = —vy;(8) = izt (t) = D dijzi(t) +55i5 = 1,2,... M
=1 =]

in which we assume the coefficients and replacements are deterministic nonnegative real

8. ettt e, v

constants. Each component (which may be a force type such as tanks or infantry, or a

-2
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force in a particular area such as Company A or B, etc.) has its population depleted by
self losses, random or “area” firing (the bilinear terms) and direct or aimed firing (the
linear coupling terms). The losses are offset by assumed steady rates of replacement, r
and 3. No infracide is allowed; that is components of the same side do not attrite one
another.

The choice of this particular structure involving linear terms, bilinear terms (z,y;),
and constants is based on two observations. First, they are a generalization of the mixed
attrition Lanchester equations with replacements

z(t) = —uz(t) — az(t)y(t) — by(t) +r

y(t) = —vy(t) — cz(t)y(t) — dz(t) + s
and second, they represent the lead terms in a Taylor series expansion of (2). In the

(4)

terminology of this paper, (4) corresponds to a 1 x 1 system.

Before explaining the behavior of N x M systems, it is valuable first to surﬁma.rize
the dynamic behavior of the 1 x 1 system. It is shown in Appendix A that four distinct
modes of behavior are possible depending on whether one stable, one unstable, two or
zero equilibrium points lie in the positive quadrant, where by definition an equilibrium
is a point in the state space at which £ = y = 0. Every 1 x 1 system always has
two such points which may be positive, negative or complex numbers. In all cases,
however, there is a “characteristic” trajectory; i.e., a phase plane curve to which all
trajectories converge. This characteristic trajectory is very nearly a hyperbola. The

direction and rate of evolution along this trajectory is determined by the equilibrium

points and their eigenvalues. If two equilibrium points exist in the positive quadrant.
one must be stable, the other unstable. If only one exists, it may be either stable or
unstable. The equilibrium points lie on the characteristic trajectory. Four trajectories
are illustrated in Figure 1, for the case of a single stable equilibrium point system.
Returning now to an .V x M system, we may ask to what degree its dynamics in

the aggregate are like those of a 1 x 1 system. Or, put conversely, can one finda 1 x 1

-3

-t xS

o e YN TN T



Figure 1 - “Typical Trajectories of a 1 x 1 System with a Single Stable
Equilibrium Point.”
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system whose dynamics closely resemble the aggregate behavior of an arbitrary N x M

2" 3a s

system? This is the central juestion to which this report is addressed.
The question is important for three reasons:

(i) The complexity of a multidimensional system grows so rapidly with the number of

JJ- ' dimensions that it is exceedingly difficult to comprehend the nature of its dynamic
v

behavior.

(2) Aggregation of detailed subsystems into a larger system of lower complexity pro-

vides a methodology for determining what the values of the coefficients of the

larger system should be.

(iii) Aggregation permits the development of a hierarchy of models which maintains a

L{{ﬂﬁﬂﬂ'

constant degree of complexity at each level of the system.

In Appendix B we show that the general N x M system - like the 1 x 1 system -

also has an “attractive tube” in the positive quadrant which collapses to a cone as it

)u L'.‘LL\'r"

passes through each equilibrium point, and that these points must alternately be stable

and unstable. A “characteristic trajectory”, determined by the dominant eigenvector

P
a“ v e q

at these equilibrium points, lies inside this tube. A potential difficulty is that the

vy

general system has many equilibrium points; specifically, an N x N system has (215 )
of them, as is shown in Appendix C[4]. If more than two real equilibrium points lie in
: the positive quadrant, it will be impossible to find a single satisfactory 1 x 1 system
_'-: equivalent. We conjecture, but have not proven that there are never more than two.!

The equilibrium points of the N x M system which lie in the positive quadrant play

a critical role in determining the system dynamics. Continuation Methods [5] provide

X AN

a powerful way (in principle) to find all the equilibrium points of nonlinear systems.

H)

Roots of a trivial system are tracked to the desired solution as replacement and linear

SARNSS]

! In fact, for the numerous versions of 2 x 2 systems that have been investigated in

this research, no more than 2 positive equilibrium points have ever occurred.

-5
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terms are introduced incrementally. This procedure is described in detail in Appendix C
and illustrated for the six roots of a 2 x 2 system. Because we cannot tell a priori which
trivial roots will become positive final roots, all must be tracked, which unfortunately

limits applicability of the method to systems with moderate dimensionality.

The remainder of this paper is organized as follows: In Section II, aggregate system
trajectories are presented for four 2 x 2 systems, along with their asymptotes, equilib-
rium points and eigenvalues. The four systems selected for study have equilibrium point
configurations in the positive quadrant that correspond to the four types of 1 x 1 sys-
tems described in Appendix A. In Section III, equivalent 1 x 1 systems are found using
mapping-down procedures that preserve the equilibrium points and the characteristic
trajectory and rate of evolution near these points. The resultant 1 x 1 trajectories
are very close to those desired, as is the dynamic behavior throughout the entire phase
plane. In Section IV, an additional nonlinearity is added to the basic equations (3) to
terminate losses for vanishingly small components by redirecting “aimed” fire to the
remaining targets. This corrective term terminates all phase plane trajectories at the
boundaries of the positive quadrant with but minimal distortion inside the positive
quadrant. In Section V the results of this research and its implications for modeling
and for initial force allocation are discussed.

II. Case Studies of 2 x 2 Systems

Equilibrium points and their local stability are important attributes of nearly all

non-linear systems. Appendix C shows how the equilibrium points of an .V x N system

can be found by Continuation Methods. In this method, the equilibrium points of a
simplified or “trivial” N x N system are determined analytically. The solutions are
then tracked to their final locations as aimed fire and replenishment rate terms are

introduced incrementally.

Any resultant real equilibrium points in an “extended” positive quadrant lie on

A R e R M O
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the characteristic system trajectory, which is interior to the bounding 2N dimensional

“tube” described in Appendix B. We define the extended positive quadrant to contain
all z,y points which component by component are greater than or equal to the vector
of X asymptotes X ,, and of Y asymptotes ¥ 4. In general, these asymptotes must be
found by numerically integrating the N x N equations. For the 2 x 2 problem, they
can be found as shown in Appendix D. The component asymptotes are non- positive,

as are the aggregate asymptotes, defined as

N
E

Xa= ZXiA and Y4 = ZYJ'A ()
i J

The aggregate system trajectory will be asymptotic to X 4 when one component of Y'’s
force beccmes dominant, and to Y4 as one component of X's force becomes dominant.
In order to illustrate these properties, we have studied 2x 2 systems in considerable

detail. The Lanchester equations of the 2 x 2 problem are:

Z1 = = [u1 + any1 + 61242) 21 — [brays + braye] + 11
2y = —[uz + anyn + G229z 22 — [baryns + baay2] + 12 ;
iho=—(v1 +cuzi +enzaly = [duzi +dnza] + 5 ©
§2 = — [v2 + c1221 + c22%2) Y2 — [d1221 + dy2z2] + 57

This prcblem has 16 attrition coefficients, four self-attrition coefficients and four re-
plenishment rates. It has a total of six equilibrium points. We have investigated four
example systems in detail: a system with no positive equilibrium points, a system with
two positive equilibrium points (one of which is stable while the other is unstable), and
two systems with one equilibrium point (stable in one case and unstable in the other).

The attrition coeflicients selected for each of these cases are listed in Table 1.

0 T T e T e T T e S W A,



? Table 1
%f Attrition Coeflicients
\ for Four Systems of the 2 x 2 Problem
Ty: uy ay a2z b b2
Case 20 10 2 1 7 6
Case 22 10 2 1 7 6
Case 2s 10 2 1 4 5
. Case 2u 3 2 1 7 6
E To: uz @1 b1 aze b2
Case 20 20 3 4 12 5
Case 22 12 3 4 12 5
Case 2s 12 3 4 6 7
Case 2u 5 3 4 12 15
u: vi €1 ¢z din dy
Case 20 10 2 3 6 5
Case 22 10 2 3 6 5
Case 2s 10 2 3 6 5
Case 2u 10 2 3 16 6
Y2 vg c12 c22 diz dy
Case 20 15 2 2 4 3
Case 22 13 2 2 4 3
Case 2s 15 2 2 4 3
Case 2u 15 2 2 15 12

(Case 20 = No Equilibrium; Case 22 = Two Equilibria; Case 2s = One Stable Equilib-
rium; Case 2u = One Unstable Equilibrium.)

The equilibrium points and replenishment rates for each of the 2 x 2 systems are

listed in Table II. Only the positive quadrant real equilibrium points are given.

,,,,, (Y W
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Table IT

Equilibrium Points and Replenishment Rates
for Four Systems of the 2 x 2 Problem

X: T T X 2] )

Case 20 - - - 17T 2
Case22u) 2 2 4 77 117
(s)  4.87 501 9.88

Case 2s 2 2 4 65 105
Case 2u 2 2 4 63 133
Y i y2 Y sy 32
Case 20 - - - 82 83

Case 22 (u) 3 3 6 82 83
(s) 0.79 1.39 2.18

Case 2s 3 3 6 82 83
Case 2u 3 3

Here, X = z, + z,, with Y, R and S defined similarly. The rationale for these
particular attrition and replenishment values was to create in a 2 x 2 environment
all four types of positive quadrant equilibrium points that occur in 1 x 1 systems. In
presenting these four cases, we are looking toward Section III in which 1 x1 equivalents

will be determined and their dynamical behavior compared to the 2 x 2 aggregate

dynamics.

The asymptotes of the 2 x 2 problem for each system are listed in Table III. They

have been calculated in accordance with the procedures developed in Appendix D. Also

R

37
194

170

196

165

165

165

6 104 123 227

shown are the dominant (exponentially growing) force components.




Table III

Asymptotes and Dominant Components
for the Four Systems of the 2 x 2 Problem

Xia Xoa Xa Dominant Yj

Case 20 -3.5 -4 15w
Case 22 -3.5 -4 1.5 Y2
Case 2s -2 -2 -4 "1
Case2u -3.5 -4 15 ©n

Yia Y2a Ya Dominant z;

Case 20 -5/3 -3/2 -19/6 z,
Case 22 -5/3 -3/2 -19/6 z,
Case 2s -5/3 -3/2 -19/6 =z,
Case 2u -2 -6 -8 Z9

Finally, in Table IV we list the largest eigenvalue and the aggregate slope of the
corresponding eigenvector at each equilibrium point. The aggregate slope of the eigen-
vector is defined as follows: if £; are the X components of the eigenvector and 7; the
Y components, then the slope is [an] / [EE j] in the aggregated 2 dimensional

j i

space.

Table IV

Eigenvalues and Eigenvector Slopes
for the Four Systems of the 2 x 2 Problem

Amax Aggregate X Y

Slope
Case 20 - - - -
Case 22(u) 0.731 -1.027 4 6
(s) -0.620 -.400 9.88 2.18

Case 2s -1.78 -1.168 4 6
Case 2u 12.62 -1.091 4 6

From the data presented in Tables I through IV, we can establish the asymptotes

- 10-
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of the aggregate characteristic trajectory for X versus Y, the equilibrium points (if any)

through which it must pass and the slope of the trajectory at the equilibrium points.
These data are shown in Figures 2 through 5. In addition, the characteristic trajectories
are shown in each Figure along with important boundary trajectories, all determined
by integrating the equations numerically.

The boundary trajectories are particularly important to a military commander.
Figure 2 shows the boundary trajectory that marks the amount of force X must use
to initiate the combat if he is to eliminate Y entirely before Y begins to dominate the
conflict and eliminate X. Figure 3 indicates the presence of two boundary surfaces: one
which X must exceed if he is to eliminate Y prior to the conflict stagnating at the stable
equilibrium point, and one Y must exceed if he is to avoid stagnation. Figure 4, which
has a single stable point, has bounding surfaces similar to Figure 3. Figure 5, which
has a single unstable point, has a single boundary surface, similar to Figure 2, which
divides the state space into two regions, one in which Y dominates and the other in

which X dominates.

- 11-
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Figure 2 - “Characteristic Aggregate Trajectory and Boundary Curve for
a 2 x 2 System with No Equilibrium Points.”
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Figure 3 - “Characteristic Aggregate Trajectory and Boundary Curves

for a 2 x 2 System with Two Equilibrium Points.”
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Figure 4 - “Characteristic Aggregate Trajectory and Boundary Curve for

a 2 X 2 System with a Single Stable Equilibrium Point."
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Figure 5 - “Characteristic Aggregate Trajectory and Boundary Curve for

a 2 x 2 System with a Single Unstable Equilibrium Point.”
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E II. Aggregation of Model

\

N The dimensionality and number of parameters needed to characterize an .V x ¥V
system, 2N (2N + 1) attrition coefficients and 2N replenishment rates. make it very

:'.; difficult to visualize or portray graphically the essential nature of the conflict dynamics

v

g when .V is large. On the other hand, a 1 x 1 system is relatively easy to portray,

l while its four principal variations still provide variety able to match a rich assortment

»

of military engagements. There is much to be gained by determining to what degree

&~

Ly

VA ORI el bR

an .V x NV system can be represented by an “equivalent” 1 x 1 system.

The major goal of the research reported here has been to develop principles that
map V x .V syscems into 1 x 1 systems. [deally, we want the mapping to preserve

closely:
a.) the aggregated phase plane trajectories X = ¥ z,,YV = 3y,
i J
b.) the tempo of the combat (i.e., the elapsed time along the trajectories), and

c.) the cumulative resources expended by each side as the conflict evolves.

If a) and b) can be satisfied by using 1 x 1 replenishments equal to the aggregate

replenishments (» = R, s = §) then the third condition is automatically satisfied.

A 1x1 system has 6 attrition coefficients and two replenishment rates. As shown
in Appendix A, it has two real equilibrium points (or none), each having a dominant
eigenvalue and a slope for the corresponding eigenvector. These sixteen quantities are
so related that specifying any eight determines the other eight. If the replenishment
rates are pre- determined by the .V x .V problem to be the aggregate rates, then only

six parameters remain free. '

In addition to preserving aggregate replenishment rates we propose the following

additional principles for mapping N x N systems to 1 x 1 systems:

- 16-
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1) Positive quadrant equilibrium points are mapped to aggregate equilibrium
points. This is possible for zero, one, or two points, but not more than two
since a 1 X 1 system can only have two.

2.) Dominant eigenvalues of the equilibrium points are equated.

LTy LS AR 0 2 S

3.) Dominant aggregated asymptotes X4 and Y, are equated.
4.) Slopes of the eigenvectors at the equilibrium points are equated.
Principles 1, 3 & 4 assure well mapped phase-plane trajectories. Principle 2 assures

that the tempo of the combat near the equilibrium points is the same.

E

For N x N systems with one positive equilibrium point, principles 1 through
4 along with the replenishment rates uniquely specify a 1 x 1 system. For N x N

systems with zero equilibrium points, only principle three applies, leaving 4 parameters

undetermined. For N x N systems with two equilibrium points, principles 1 through
4 determine 10 quantities, so a “best compromise” of some kind must be found.

In order to test these principles, we have used them in mapping down the 2 x 2
systems studied in Section II. Table V lists the parameters determined by the 2 x 2

systems with one equilibrium point.
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Table V
Single Equilibrium Point
1 x1 Systems
x, Y1 X4 Ya A\ Slope 1
Case 1s 4 6 -4 -19/6 -1.78 -1.168
Case 1u 4 6 -7.5 -8 -12.62 -1.091

TR A SO P ST L AT AW

These, along with R and S determine the eight attrition coefficients as listed in

Table VI.
Table VI
Attrition Coefficients
of 1 x 1 Equivalent System
u v a c (b= -X4a) (d = =Yac)
Case 1s 16.06 11.70 2.65 2.58 10.60 8.17
Case lu 4.33 11.91 2.59 2.77 19.41 22.16

The characteristic trajectory and bounding trajectories of these two 1 x 1 systems
are shown as Figures 6 and 7. Comparisons with Figure 4 and 5 indicate that the pro-
posed mapping principles work extremely well for 2x 2 systems with single equilibrium
points.

For systems with 2 equilibrium points, application of all four principles determines
10 quantities. There are only six free parameters in the 1 x 1 system, so a best overall
fit must be found. We have elected to map the equilibrium points exactly and then find
a compromise between the eigenvalues and asymptotes to produce a fit close both to the
rate of conflict evolution and the phase plane geometry. (The slopes at the equilibrium

points are tightly constrained by the geometry of the problem and therefore tend to be

- 18-
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Figure 6 - “Characteristic Trajectory and Boundary Curves for an “equiv-

alent” 1 x 1 System with a Single Unstable Equilibrium Point.”
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Figure 7 - “Characteristic Trajectory and Boundary Curve for an “equiv-

alent” 1 x 1 System with a Single Unstable Equilibrium Point.”
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numerically close to the desired slopes automatically). Table VII lists the properties
of the 2 x 2 system with two equilibrium points and an equivalent 1 x 1 system.

Characteristic phase-plane trajectories are shown in Figure 8.

Table VII
Case 12
Compromise Mapping of Two Equilibrium Point System

2 x 2 System 1x1 System

I, 4,6 4,6

A1, slope; 0.731, -1.027 0.733, -1.031
3,Y2 9.912, 2.18 9.912, 2.18
A2, slope; -.62, -.401 -.68, -.400
Xa,Ya -7.5, -3.1667 -6.736, -3.695

Comparing Figure 8 to Figure 3 shows that the phase plane geometries are nearly
identical in the positive quadrant. The trajectories shown by z’s in Figures 8 and 3
compare the tempo of combat along a particular trajectory. Again, it can be seen that
these compare favorably during both rapidly evolving stages and slowly evolving stages.

Systems with zero equilibrium points are undetermined by our principles as only
two values, the asymptotes, are known. Case 22 of the previous section was determined
from Case 20 by increasing the replenishment rates of the X forces until there were two
equilibrium points in the positive quadrants. Our “equivalent” 1x 1 no-equilibrium case
was obtained by utilizing the attrition coefficients of Case 12 and the replenishment
factors corresponding to Case 20. The resulting trajectories are shown in Figure 9.
When compared with Figure 2, we see that there is a very close agreement.

One of the critical boundaries dividing the phase plane in 1 x 1 systems with an
unstable equilibrium point is a line passing through that point and perpendicular to
the characteristic curve at that point. This curve may be found in 1 x 1 systems by
integrating backwards in time away from the equilibrium point, thereby staying on the

ridge bisecting the plane. Traveling along this ridge is the only way in which a system

- 91-
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Figure 8 - “Characteristic Trajectory and Boundary Curves for an “equiv-

alent” 1 x 1 System with Two Equilbirium Points.”
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Figure 9 - “Characteristic Trajectory, Asymptotes, and Boundary Curve

for an “equivalent” 1 x 1 System with No Equilibrium Points.”
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can evolve to an unstable point (6]. These bisecting curves are shown in Figures 7 and
8.

The 2 x 2 systems have boundary surfaces in their four dimensional state space.
Therefore, aggregated boundary curves depend to some degree on the initial force
compositions. All aggregated trajectories shown in Figures 2 through 5 were obtained
using uniform force compositions. At least for this case, the boundaries determined
by backward integration yield a very close approximation to the proper division of the

aggregate state space shown in Figures 2 through 5.
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IV. Terminating Attrition Losses of Vanishing Force Components

Several deficiencies exist with generalized Lanchester equations as models of com-
bat. One of the more obvious occurs when a vanishingly small force component con-
tinues to suffer aimed fire attrition in direct proportion to the number of opposition
forces. The linear attrition term is a reasonable model for aimed fire only in a “target
rich” environment.

One can modify the generalized equations such that all force components will
terminate at the boundaries of the positive quadrant of the state space in the following
way:

N N
. i/ ZTi .
Ti=—-z; | ui + E ai;jyi | = [}';T:] E bf,y,-+r.';2=1,2,---N
Jj=1 j=1 (7

N N
=1 =1

where X = _ﬁl z;,Y = é y; and we make the further provision that }lriglo z;/ X =0
and }igo Yj /‘17' =0 The_terms with subscripted zeros are initial values.)

The multiplier [%] assures that z; cannot become negative because as it ap-
proaches zero, the aimed fire power of Y is reallocated away from the vanishing z;
targets to other components of the X force. The aggregate aimed fire loss rate remains
essentially constant until there are no z targets left at all.

The corrective term introduced into (7) does not appear to alter significantly the
aggregate trajectories of the original generalized Lanchester equations in the positive
quadrant. Although (strictly speaking) it has introduced a complicated nonlinear cou-
pling among like force components, the major practical effect on the trajectories is

concentrated near zero force levels.

To illustrate the behavior, we first re-integrated Case 2u of the previous section in-

cluding these factors, but found tnat the balanced equilibrium point force composition

tends to cause the individual losing force components to come to zero nearly simultane-

- 25— |

A A e R e C R L P L S PR S e ST
L LA P4 n_"-:"A_"f n."L{L’m{'_{\:{n.{-.ﬁ_{&th{).'g.l *



Sn Bath A g Ly a0, A ket b N SRRk AR Ral ot R L Al el LA S b il Sl R R b td AL g AT T T T A a A A aV oMY a e a " eT e e Tat e -T

v
AR R

O 4

ously anyway. Therefore, Case 2u does not provide a good illustration of the aimed fire

«f £

reallocation property that has been built into the nonlinear coupling. Consequently,

A .

LMLy

we altered the replenishment rates of Case 2u such that the unstable equilibrium point
moves to (4,2,3,2) and designate it Case 2a. With the termination factors included it
is designated Case 2b. The initial normalizing zero subscripted variables have been
chosen at the unstable equilibrium point of Case 2a.

Figure 10 compares the force evolution of the four force components for the two
cases. It shows how the attrition rate of z; and z, become zero simultaneously. The
Y components do not grow quite so fast because of the greater residual z; force.

Figure 11 compares the asymptotic aggregate phase plane trajectories of the two
cases. It is evident how similar these are in the positive quadrant, although Case 2b
can never exhibit a negative force component value. Since conflict tnicﬂy terminates
at an aggregate force level considerably greater than zero, (perhaps 20 - 50% of the

inital force level), this equivalent 1 X 1 systems should have the desired property of

modeling “aimed” fire combat more realistically.
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Figure 10 - “Comparing Force Component Evolution With and Without
Aimed Fire Reallocation.”
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F V. Discussion and Further Work
:
¢

In this paper we have reported the results of our research into the dynamical prop-
erties of a system of generalized Lanchester equations. The principal finding of our re-
search is that their behavior in the aggregate is closely determined by initial conditions
and a few important geometrical features in the state space. These are the equilibrium
points of the system, along with their dominant eigenvalue and eigenvectors, and the
asymptotes. Methods have been provided to find these features and illustrated for 2 x 2
systems. Given these features, one can find a characteristic aggregate trajectory toward
which all trajectories are attracted. Once near this characteristic trajectory, evolution }
continues along it either toward an equilibrium point that is stable or away from an
equilibrium point that is unstable. If there are no equilibrium points in the direction
of travel, then evolution is toward an asymptote. However, since asymptotes are al-
ways negative, zero values will be reached for one or more of the state variables as the
asymptote is approached. Since the state variables represent quantities of resources,
evolution must be modified on approaching the boundaries of the positive quadrant. In
Section IV we suggested a means to terminate the trajectories at the boundaries with

minimal alteration to their properties interior to the positive quadrant.

Perhaps one of the most important resuits of our research is a technique to map
N x M systems of Lanchester equations into equivalent 1 x 1 systems. There are two
reasons why this is significant. First, it provides a means to determine the coefficients of

large complicated systems by aggregating smaller (and simpler) ones. and to assess the

sensitivity of overall system behavior to changes of individual subsystem parameters. ‘
Second, it provides a set of principles for developing a hierarchy of consistent models at
ascending levels of military systems which preserves a constant level of complexity at
each level. Because of the potential sensitivity of critical dynamical features (such as

the eigenvalues, and hence the stability, of equilibrium points) to individual subsystem
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parameters, however, it remains possible to trace their effects throughout the entire
multilevel structure.

A topic of further research concerns the control of these non-linear systems. There
are two controllers, one for each side, whose objectives are in conflict. Given that each
side starts with finite resources and finite growth rates, then at issue is how each side
should allocate his resources initially and during the evolution of the conflict. A second
topic concerns the stochastic vice deterministic representation of attrition systems, as

well as the effects of uncertainty in observations of the system states.
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Appendix A
Asymptotes & Equilibrium Points

The 1 x 1 equations are:

t=-uz—-zray—-by +r

(8)

Yy=-—vy—zcy —dzr+3s

Solving (8) for £ = y = 0, we obtain

u r b u
(s+3) (+5)=Z+2-% %)
and
d d
(z+3)(y+—)=f+3-- (10)
¢ ¢ c ¢ ¢
Each curve is a hyperbola having the form
(z+ai)(y+3i)=(ri+aifi) ; 1 =111 (11)

the upper branches of which may be plotted as shown in Figure 12. Clearly, wherever
the curves (I) and (II) cross is an equilibrium point of the differential equations. As
shown in the figure there are four distinguishing cases. In cases (a) and (b) we say
the asymptotes are “crossed”, and there is always exactly one equilibrium point on the
upper branches. In cases (c) and (d) the asymptotes are “nested”; there will be two
or zero equilibrium points on the upper branches depending on the relative sizes of the
terms {v; + a;J3;).2
Stability at an Equilibrium Point

It is instructive to investigate the stability of (8) in the vicinity of an equilibrium

point, say (z9,yo). Letting z = zo + 6z, y = yo + dy we have
0z = —(u + ayg )6z — (b + rga)dy
(12)
by = —=(d + cyo)bz — (v + zoc)by

2 If there are no equilibrium points on the upper branches, either there are two
on the lower branches or else both equilibrium points are complex. If there is one

equilibrium point on the upper branches, then there is another on the lower branches.
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Figure 12 - “The Four Distinct Cases of the 1 x 1 Problem.”
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The system will be locally stable if both eigenvalues of the matrix

_|(u+ay) (b+ zoa)
C_[(d+cyo) (U+Ioc)] (13)

have a positive real part. The characteristic equation is

(u+ay)—s3 (b+ zoa)

(d+cye) (v+z0c)—3 =0 (14)

or
s* = (v+zoc+u +ayo)s + [(u + ayo)(v + zoc) — (d+ cyo)(b + z0a)] =0 (15)

Since each term in parentheses is positive for (zq,y0) on the upper branches of the

hyperboles (11), it follows that the real part of both eigenvalues will be positive if

(v + ayo)(v + zoc) > (d + cyo )(b + zoa) (16)

If we rewrite this as
utay d + cyo

17
b+ z9a = v+ zoC a7

then from equation (12) the stability condition can be interpreted as
|mef > |my] (18)

where m, and m, are respectively the slopes of hyperbolas I and II at (2o, yo).
The Trajectory Dynamics

The stability of an equilibrium point provides insight into the trajectories of combat
dynamics. For large values of z and y, both £ and y are negative, and a typical

trajectory will move closer to the origin until it first crosses one of the hyperbolas. If

in case (b) of Fig. 12 the trajectory crosses I first £ becomes positive while y remains
negative, and the trajectory bends towards the equilibrium point, as shown. A similar

result obtains if the trajectory crosses II first: in both cases, the trajectory enters
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the tube between I and II and heads towards the equilibrium point which is stable.
Furthermore, once within the tube, the trajectory cannot escape since at the boundary

one derivative is zero and the other points back into the tube. It follows that all 1st

L9 IXFIEAS g

s

quadrant trajectories:

L

e are captured by the tube, and

e come to rest at the equilibrium point

w
A
Ca
.i
LI

In case (a), the equilibrium point is locally unstable. The tube between I and
II again captures the trajectory, but now guides it away from the equilibrium point
rather than towards it. Thus z or y will win the battle, depending on whether the
initial combat point is above or below the separating curve shown in Figure 12a. This
separatrix will clearly be of prime importance in any application of the theory; it can be
calculated numerically (as was done for the case shown) by backwards integration from

the equilibrium point, departing perpendicularly to the dominant eigenvector (which

must lie within the tube.)

When there are two equilibrium points on the upper hyperbolas, it is obvious
geometrically that one must be stable and the other unstable. Typical trajectories are
shown in Figure 12¢. If there are no equilibrium points, case (d) the tubes still capture
the trajectories, and conduct them in one direction (z wins ) or the other (y wins)

depending on whether hyperbola I or II is uppermost.

Degenerate cases

There are two degenerate cases which we consider in the interest of completeness.
If the two hyperbolas osculate, there is a double root with eigenvalue zero. The tra-
jectories either move to the equilibrium point and stall, or else move away from it,

depending upon where they enter the tube.

If the two hyperbolas coincide, the entire curve is in neutral equilibrium, so that

trajectories stall at the point at which they reach the curve.
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Characteristic Trajectories

The trajectory that passes through an equilibrium point along the dominant eigen-

vector [i.e., the eigenvector corresponding to the largest eigenvalue of the linearized

equations (12)] plays a special role: we call it the “characteristic trajectory”. Clearly,

if the global problem were strictly linear, all trajectories ultimately would be asymptotic

to the dominant eigenvector. In the bilinear case, considered here, the non- linearities

appear to be sufficiently weak that the same effect occurs, and all trajectories ulti-

mately converge onto the characteristic trajectory. The characteristic trajectory nests

between the hyperbolas I and II and can itself be approximated by a hyperbola, as

illustrated in Figure 13.
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Figure 13
«A Characteristic Trajectory and its Hyperbolic Approximation.”
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Appendix B

Asymptotic Trajectories
In this appendix, we study the dynamics of combat evolution, primarily with the
intent of understanding the nature of the multi-dimensional trajectories z(t), y(t) when
z and y are respectively .V and M component vectors. The analysis is motivated by the
relatively simple results in the one-by-one case, discussed in Appendix A. Qur objectives
are to uncover similar behavior in the M x N case, and to gain insight regarding how
to aggregate multi- dimensional forces into a 1 X 1 model having roughly equivalent
behavior.
State Equations: The combat model we analyze is a generalization of Lanchester’s
equations, namely:
I; = —u;T; —J;,-Za,-jyj - Zb,’jyj +ri 5 1=12,...,N
! ! (19)
Yi = ~vjyj — Yj Zc,-j:z:g - Zd.-j:c.' +s3; ; 1=12,....M
i i
Whenever the replenishment terms (r;) and (s,) exactly cancel the losses, so that all
the time derivatives are zero, we have an equilibrium point, say (z°,y%), and
z9(u; + Za.-jy?) + Zb.-jy? =r;t=1,2,...,N
J b)

(20)
y;’(vj + Ec,-_,'z?) + Ed.-,-x? =s5;,7=12,....,.M

In the vicinity of any equilibrium point, the combat evolution is governed by the

set of linear equations obtained by substituting

z; = x? + b6z,

(21)
yi =yj +0y;
which yields (for all 1, )

6 = — |ui + Zai,‘yg bz; — Z [bi; + aijz?] y;
j ] (22)

63]1- = — Z [d,’j + c.',-y?] bz — [UJ + zc,] ] 5y_,
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These last equations can be written conveniently in the matrix form

(5)== () &

where the (N + M) x (N + M) matrix C has the structure
( 0 \

a;; D By

C=\|... ... ... (24)

L AR g paan SRR IRGRES,  di 4 A gl st ot 8 A MM

€ : Vii
\ Lo )

We are interested only in situations for which (z°,y°) is non-negative, in which case

all the elements of (C) are non-negative.

Impermeable Boundaries: It is evident from (22) that near an equilibrium point the
locus of all points on which any particular éz; is equal to zero is an (M +1)-dimensional
plane; specifically

51‘2,' =0 and —a.','5:1?,' - Z,@gj&%’ =0 (25)
J
Thus the point (§z;,6y) is beneath this plane if §%; > 0, and conversely §z; < 0 for all

points above the plane.
We now make the simple but crucial observation that in the linearized model:

If 6y;(t) > 0 for all j & ¢, then any point that lies beneath the plane 6z; =0 at t = ¢

will remain beneath the plane for all £ > ¢3. An easy way to verify this is to note from
(22) that if at any instant ¢; the point (8z;,6y) lies on the plane §z; = 0, then the

facts

6z; = 0,6y; > 0 (for all 5)

imply that §z; is (instantaneously) constant, whereas by assumption all the {6y, } either

increase or are also constant. It follows that at time ¢; + dt
6z; <0
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which implies that (§z;,6y) must again lie on or beneath the plane. Since the point

can never penetrate the boundary plane from below, obviously it can never get above
it.
Similar arguments lead to the additional cases summarized below:
If for all j {éy; > 0}, then 6z; <0 endures for any :
If for all j {éy; <0}, then éz; >0 endures for any :
If forall: {6z; >0}, then éy; <0 endures for any ;

If forall: {éz; <0}, then 6y; >0 endures for any j
We conclude that the cone in our N x M (linearized) space for which either

{0y; >0} and {6z, <0} foralli,j

or

{6y; <0} and {6z; >0} foralli,j

is a “trap” from which the operating point (6z,8y) can not escape. Since the cone

always exists, so does the trap.

The Non-Linear Case: The real problem posed by (19) differs from the incremental
case (22) primarily in that the state equations are non- linear. For any fixed value of
i, however, the locus of z; = 0 is still a plane in the (y;); we have from (19) that

z,=0— Z(b;j + a;jx;)yj =T — Uix;
J

The situation may be visualized as shown in Figure 14 for the case V =1 and M = 2.

For r, = 0, we require

(i +anzi)yr + (2 +ai2z1)y2 =711 — w1y

s> that
0 ry — U1y
y2 = — yl —_—
by +ay1zy
- 39-
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which is a hyperbola with asymptotes at y; = —uy/a1; and z; = —by1 /a1, and

rn = U1

=0 —_ =
n vz biz + @122

which is a hyperbola with asymptotes at y, = —u,/a;2 and z; = —b;2/a;2. The
surface £; = 0 is generated by the straight lines joining points on the two hyperbolas
corresponding to the same value of z;, as shown in Figure 14.

It is worth noting that the slope of the generating lines is

Ay - by2 + a2z
Ayz by +ann

which varies from b5 /b1y at 1 = 0 to aj2/a1; as z; — oo. By contrast, the slope of
the corresponding lines in the incremental case (2) is constant. The obvious effect of
the non-linearity is a “twisting” of the surfaces {§z; = 0}; the amount of twisting is,
however, limited to < 90° by the non-negativity of the attrition coefficients.

A second observation is that the surfaces £; = 0 and y; = 0 preserve their identity
throughout the (extended) positive quadrant, defined by the positive branches of the
hyperbolas. Thus the twisting of these surfaces causes the trapping cone near an
equilibrium point to deform into a non-linear “tube”, but can neither destroy the
existence of the trapping region nor change its nature. Indeed, the only way this tube
can vanish is for it to contract into another cone at a second equilibrium point, and
of course the tube then continues on the other side (with reversed éz;'s and éy;’s) as
the cone passes through the equilibrium point. We conclude that such a tubular trap
must always exist.> Moreover, evidently it is unique, i.e., only one such tube can exist

in the extended positive quadrant.

3 The tube exists even when there is no equilibrium point in the extended positive
quadrant, a fact which may be deduced (for example) by reducing all r's by a scale

factor (keeping all other parameters constant) until an equilibrium point does exist.
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Implications: A number of conclusions follow from the preceding analysis. With regard
to the cones emanating from any equilibrium point, we note that:

(1) The dominant eigenvector* of the matrix -C in (24) must lie inside the trap-

ping cone, because in the linear case any trajectory must ultimately converge

onto the dominant eigenvector.

AL E LSS M LA DT Y

(2) All (6z;) components of the eigenvector must have the same sign, and be

opposite in sign to all the (§y;) components because all the time derivatives

-
-

have this property and no trajectory can escape the cone.

(3) All trajectories in the vicinity of the cone will be attracted into it, because it
contains the dominant eigenvector.

Shifting our attention to the non-linear trapping tube, we note that:

(4) All equilibrium points in the extended positive quadrant must lie along the
tube, because there can only be one tube and each equilibrium point generates
a cone.

(5) The equilibrium points along the tube must alternate between. stable and

unstable, because all §z; and éy; in a cone lead either towards or away from

the apex.
(6) The trapping tube is an attractor, and we strongly surmise that all trajec- |
tories originating in the extended positive quadrant ultimately approach the
trajectory generated by the dominant eigenvector at any cone. Although we
have as yet no formal proof for this asymptotic property, its validity is con-
sistent with geometrical similarity to the linearized model and accords with

our computational data.

* By “dominant eigenvector” we mean the eigenvector corresponding to the largest

eigenvalue of -C
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Appendix C
Equilibrium Solutions
In this appendix, we describe a technique to find the equilibrium points of N x ¥

Lanchester systems. Specificaily, we seek solutions of the equations

N
z; u.'+2a;jy,~ +p(

j=1

N
Zb,’jyj —r,-) =0;i = 1,2....,N

=1

N N
vj (v,- + Zcij-ti) +P<Zdijxi - 3,’) =0;J

=1 =1

(26)

I
—
-

t
-
[N,
<

with the parameter p = 1. One can find them using continuation techniques, by

numerically tracking the roots for p = 0, which are called the trivial soiutions, as p is
increased incrementally from zero to one.

Here, we describe how to find the trivial roots and a technique to track them to
their final values, and illustrate this with data from the 2 x 2 examples in the paper.
It is important that terms are so parameterized that there are as many trivial roots as

there are final roots. This is assured by parameterizing only linear and constant terms.

It is also important that the trivial system

N
T u.~+Za.-,-yj =0:1=1,2,....N

=1

(27) f
N
Y; (v,'+Zc.~,~z.~) =053

=]

0
=
»
2

have readily determined solutions. One solution

Another solution exists when
N
ug+Zaijyj =0:=12,...,.N
=1

N
<v1+Zc.-,»z,v) =0;j=12...,N

(28)

Tl e AT A




g Ul 00 M a0 Rt 1At gt i AL AL A AR A

2
3
\\
"
A
-
.
;
L]

s g g et aet et i At ARV A A AR A G A, |

These are simple systems of linear equations with unique non-zero solutions, providing
they are linearly independent.
Other unique solutions are found by setting various combinations of the z, and y;,

but not all of them, to zero. For example, letting zx and yny equal zero we have
zilui+ ) @iy | =0i=1,2,...,N-1

N-1
Yi (”:‘ + Z Cijz;) =0;=12,...,N-1

=1
For the remaining z; and y; not necessarily zero, we must have the two systems of
.V — 1 linear equations in the brackets equal to zero. In general. there is one unique
solution to these equations providing they too are linearly independent.

For z; = 0, there are () = N possible y;’s to select as zero. Since this is true for

each of the (V') choices of the z; to be zero, there are ({ ) = N? trivial solutions with

exactly one z; and one y; = 0.

We may now take any two of the r;’s = 0 and any two y;'s = 0, leaving two systems
of N — 2 linear equations in brackets that must equal zero. For each pair of z;’s, there
are (’;’ ) ways of picking pairs of y;'s equal zero. This can be repeated for each way of
picking pairs of z;'s = 0 or () times. Thus there are 4 )2 solutions with exactly two
zi’s and two y;’s equal zero.

This procedure can be repeated, picking 3,4,...,...,N =1 z;’s and y;’s simulta-
neously equal zero and solving the remaining sets of linear equations. There are (‘2’)
ways of picking k y;'s equal zero for each set of k z;'s = 0. This can be repeated (%)
times for each way of picking k£ z;'s = 0, thus producing (f )2 solutions with exactly
k z;’s and k y;’s equal zero.

We can not in general obtain solutions by taking different numbers of r;’s and y, s

equal zero. This may be illustrated as follows. Suppose we take zy = 0 but not, in

- 44—
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general, any of the y;’s. From (27), we must have

N-1
(vj+zci,z.-)=o i=12,...,N (30)
=1

which cannot be consistent (unless they are linearly dependent) since there are N
equations to satisfy with NV — 1 variables. A similar argument pertains any time we
attempt to put an unequal number of z;’s and y;’s to zero. Thus we see that there are

at most®

e () ) (B ()

k=0

unique solutions to (27). Table VIII below shows the growth of trivial solutions for N
from one to ten.

Table VIII

Equilibrium Solutions

Z,
—
[
(%)
NN
o
(2]
-3
Qo
©

10

Q 2 6 20 70 252 924 3432 23870 48620 184756

By way of illustration, consider the trivial solutions of the 2 x 2 problem. The

3 See C. L. Liu, Introduction to Combinational Mathematics, McGraw-Hill, 1968,

pp. 27 - 28, for proof of the identity
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trivial equations are:

zi(uy + a1y +a12y2) =0

AP 4
<
Sl

kL

€

o

zo(u2 +a1yy + azzyg) =0
yi1(vy +c1123 +¢2122) =0

y2(v2 + c1221 + 6221‘2) =0

and the six solutions are

(1) 1 =22=0,y1 =y =0

(2) 71 = 0,22 = —v2/c22, 51 = 0,y2 = —uz/az
(3) 1 =0,22 = —vi/en,y1 = —uz/az,y2 =0
(4) z) = —vz/c12,72 = 0,4y = 0,y2 = uy/ay,
(5) zy =-v/en, 72 =0,y1 = —w1/an,y2 =0

plus the solution to the equations

(6) v + 11z + 62172 =0, Uy +any +a52y2 =0

v2 + €12Z1 + €222 =0, uz + a2y +axy2 =0

We note that all solutions of the trivial system (27) are real and, except for the
all zero root, have at least one negative component. The only equilibrium points of
the Lanchester system (p = 1) that are physically significant are real points with all
non-negative components. Unfortunately, one does not know which trivial roots, if any.

correspond to final real, positive ones. Therefore all must be tracked, and as p increases

from zero, provisions must be made for them to become complex, and once complex.
to become real again as p increases even further. Note also that since the coefficients

of (26) are real, complex roots occur in conjugate pairs.
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A general technique of tracking the roots involves a combination of “predictor”
and ‘:corrector” steps. For the particular parameterization we have selected, these two
steps are remarkably similar, each requiring solution of linear equations which differ
only in their right hand sides.

We first describe the predictor step. The solutions of (26) obviously depend on p.
If we perturb p, we expect a perturbation in the solution. Thus perturbing (26) by ép

t and retaining only first order perturbation terms in the state vector gives

6zi ui+zaijyj + z; Zaij5yj +6p Zbg,-yj—r.- +p Zbijéyj =0
, : 7 .

l J J J

: i=1,2,...,N

9

b

E 6y,' (UJ' + ZC;‘j.’L‘,‘) +Y;j (Z c,~j5:r,-> +5p (Z d.~,~z.~ —Sj) +p (Z d.‘j&l‘,‘) =0
1 H 1 t

: :7=12,...,N

(32)
which is recognized as a system of 2V linear equations in the perturbations vectors 4z

# and §y upon rewriting as

dz; u.~+2a,~,—y,- +Z(z.-a,~,-+pb,-,—)6yj=6p r,-—zb,-jyj it=1,...N
J J j

oy; <vj + Z c,'jx,) + Z(ij;‘j + pd;j) dz; = 6p <s,~ - Zd,-,-:c,-) i 7=1...N
(33)

If (z,y) is a root at p, then (z + 6z,y + 6y) is the best linear prediction of the root at

p + 6p. Since §z and éy are also potentially complex, solving (33) involves solving a

system of 4NV linear real equations.

After a few predictor steps, errors begin to creep in such that the predicted root
deviates from the true root. A sequence of “corrector” steps are initiated, keeping
p constant, until the error is reduced to an acceptably small value, at which point

prediction is resumed. In this work, we employed a generalized Newton’s Method for

- 47—



|

w L

i
:
;
t
'E';

correction. Let
exy = I; uifz:a.jyj +p Zb.‘jyj—rj ;o1=1,...¥
J J

ey; = y; (v, +Zc.~1‘xi) +P(Ed=‘jzi-81) b J=L...N

be 2N complex error terms associated with a point (z,y).

(34)

Let us expand these in a Taylor series about a current guess for a root (z',y'),
which is near the true value, and retain only the first order terms. The errors are

Oez; Oez; L
63:,' 6.’1:,-{-; ay]. 6y1 vz‘-1,2,...N

ez; = ez, +

Oey; Oey; (39)
eyj=ey;-+—a—yzj]-5yj+z ai’&z; J=12,...N

where the partials are to be evaluated at (z',y'). We find the new point (z' + éz,y' +
8y) by solving for (§z,8y) such that the new errors (ez, ey) are simultaneously zero.

Carrying this out one obtains the 2N complex linear equations.

N N
Sz | ui + Za.-jy;- + Z(:c;a.j + pbij)dy; = —ez; i=12,...N
J J
36
N v (36)
8y (v,- + Zc,-,'z:) + Z (vjcij + pdij) 6zi = —ey’; j=1,2,...N

which are identical to (33) except the right hand sides have been replaced by the current
errors. Thus, the predictor step and the corrector step both require solution of the same
system of 4N real linear equations.

We have programmed the root tracking equations to track all six roots of the 2 x 2
problem (which requires a system of 8 linear equations) and tested it for a number of
cases including the four cases described in Section II of this paper. The six trivial,
or initial, roots (p = 0) and six final roots (p = 1) for these are given in Table [X.

At this stage, our program remains quite interactive in order to handle trajectories as
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an individual component passes through a singularity or as pairs of real roots merge

to a complex conjugate pair or as complex roots separate into two distinct real roots.
Nevertheless, the Continuation Method does work satisfactority and we are convinced

it is a straightforward, albeit computationally intensive, means to find the equilibrium

points of low order Lanchester systems.
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Table IX

Equilibrium Points

Initial Roots(p = 0)

Final Roots (p = 1)

z1 2 n Y2 I z2 n Y2
-4.74 -166 -15.2 17.7
0 0 0 0 +3.09 +31.31 -j12.5 -j24.2
0 -7.5 O0/R -3 842 -237 -1.78 -1.72
0 333 4 O 487 -31.9 -433 -3.31
-75 0 0 -10 -34.0 -5.84 -4.17 3.66
-5 0 5 0 #1 Conjugate
-125 0 -5.6 1.2 -6.29 -899 -23.5 178
0 0 0 0 489 5.01 .79 1.39
0 75 0 -3 229 -123. -1.80 -20
0 333 4 0 86.0 -39.0 -3.70 -1.30
-75 0 0 -10 -6.20 -1.53 -18.25 -248.
-9 0 5 0 2. 2. 3. 3.
-12.5 5 -5.6 -1.2 -7.15  .245 -34.9 934
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0 0 0 0 2. 2. 3. 3.

0 i 0 -3 18.0 -141. -1.8 -1.38
. 0 -3.33 -4 0 68.8 -36.3 -3.36  -1.04
Case2s -75 0 0 -10 9.35 -4.15 -751 -11.1

& -5 ) -5 0 -2. -2, 104 13.86
- 2123 5 5.6 1.2 562 -1.26  -24.3 882

0 750 -1.25 -3.02 -2.51  -399 501
+j1.00 -j1.13  +j18.2 +j3.10
0 -3.33 -1.67 0 #2 conjugate
Case2u -75 0 Q 3 20.7 176 .95 -2.52

+j13.6 +j27.7 +j2.16 -j2.70
-5 0 -1.5 0 -6.13 -4.53 -145  -42.7
-12.5 5 -1.4 -2 #4 conjugate

RSO

e e e R R L S R L G DAL PNy
- - - o
A "_s.‘:\’a{-.':-.'}.': R 'J.’ RS .‘f.ﬁ". e e e T C




AT Y 0 v D YRV .Y e s W T

Rl
I

Y AL P PR RN R R . e,
N A S A RS R R SR R R R R N P Y P Y A A

In this appendix. we describe how to find the asymptotes of the 2 x 2 system
2y = —zy (uy +anyr + erzy2) — (brayn +diaye) + 11
T3 = ~z2 (U2 + a21y1 + azeyz) — (bary1 + b22y2) + 12 -
{
1 = =y (v +enzy +enz2) — (dnzy +dnzz) + 6 !

Y2 = —y2 (v2 + €121 + c2222) — (d127y + dazz2) + 32

At the X asymptotes {X 41, X 42} either one or both components of y are increasing

without bound and z, = z; = 0 so that from (37)

b b
5= Xy = —urthuy e _bayr + by (38)
a1y + a2y a1y + G292
Also, from (37), the growth rates of y are approaching
1 = — (v +cenzy+enz2)n
(39)
Yo = —(v2 + 1271 + €22T2) Y2
at the asymptotes. Now if the growth time constants are different and
—(2)1 +011.’81 +621.1‘2) > —(’02 +012$1 +6221,'2) (40)
then y; will grow exponentially faster than y; and eventually dominate so that
Xa1 = =bu/an, Xa2 = by /an (41)
Combining (40) with (41) implies that
b
ey —en) + .Il’i(cﬂ - c22) > (v —vg) (42)
a1 a1

Thus, if (42) holds then (41) gives X 4 and y; is the dominant y component.
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‘E Conversely, if near the asymptotes
:
N
N —(vz2 + 1271 + €2272) > —(v1 +e1121 + €21 72) (43)
E then y; is growing exponentially faster than y; so that
N
.
\ Xa1 =bz/a12 Xaz = —bgz/a (44)
Combining (43) with (44) implies that
o~
b
L2(011 —ci12)+ 22_2(621 -c22) > (v2 —v1) (45)
a2 a2
: Thus if (45) holds, then (44) gives X 4 and y; is the dominant y component.
., Finally, suppose near the asymptotes that y; and y, grow exponentially at the
3 same rate, i.e. that
'- v2 + 1221 + 2222 = v2 + 11 T1 + €122 (46)
and so remain in a constant ratio k = y,;/y; to one another as they grow. Combining
(46) with (38) means that this constant ratio k must satisfy the non-linear equation:
b + kblz b2 + kb22
‘ T2 - 2 N 22 - =y — 47
'_E 11 + Karg (e11 —c12) + 21 — kazs (a1 —ca2) =vi— (47)
-E From k, we find the asymptotes as
b1 + kbyp ba1 + kb2
Xgy=-—2T"712" x,,=-217 22 48
Al a11 + ka2 2 az; + kazz (48)
3 The Y asymptotes, Y 4, are found by similar means. The results for X4 and ¥ 4
A are displayed in Table X for single dominant components.
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Table X
2 x2 Asymptotes

t

F

11

K

12

43

11

sf
g

b
(c11 —c12) + 2 (c21 — ¢22) > (v1 — v2)

b
(e11 = c12) + 22 (ca1 — €22) > (v2 — vy)

(a11 — @21) + 22 (a12 — az2) > (uy — up)

(a11 — a21) + 22 (@13 — az2) > (uz — uy)
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Asymptotes

Xa1==b11 /a1,
Xaz==ba1/a,y,

Xaz==bi2/ay2
Xaa=—b22/az;

Yar=—dy /e
Yaz=—diz/c12

Yar==da1 /en
Yaz=—d2z/c22
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Figure 1 - “Typical Trajectories of a 1 x 1 System with a Single Stable Equilibrium Point.”
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Figure 2 - “Characteristic Aggregate Trajectory and Boundary Curve for a 2 x 2 System
with No Equilibrium Points.”

Figure 3 - “Characteristic Aggregate Trajectory and Boundary Curves for a 2 x 2 System
with Two Equilibrium Points.”

Figure 4 - “Characteristic Aggregate Trajectory and Boundary Curves for a 2 x 2 System
with a Single Stable Equilibrium Point.”
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Figure 5 - “Characteristic Aggregate Trajectory and Boundary Curve for a 2 x 2 System
with a Single Unstable Equilibrium Point.”
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Figure 6 - “Characteristic Trajectory and Boundary Curves for an “equivalent” 1 x1 System
with a Single Unstable Equilibrium Point.”

Figure 7 - “Characteristic Trajectory and Boundary Curve for an “equivalent” 1 x 1 System
with a Single Unstable Equilibrium Point.”

Figure 8 - “Characteristic Trajectory and Boundary Curves for an “equivalent” 1 x1 System
with two Equilibrium Points.”

Figure 9 - “Characteristic Trajectory, Asymptotes, and Boundary Curve for an “equivalent”1x
1 System with No Equilibrium Points.”

Figure 10 - “Comparing Force Component Evolution With and Without Aimed Fire Reallo-
cation.”

Figure 11 - “Comparing Aggregate Phase Plane Trajectories With and Without Aimed Fire
Reallocation.”

Figure 12 - “The Four Distinct Cases of the 1 x 1 Problem.”
Figure 13 - “A Characteristic Trajectory and its Hyperbolic Approximation.”

Figure 14 - “The Attracting Tube for the 1 x 2 Problem.”
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